Acquisition footprints and seafloor coupling in multicomponent OBC seismic data

Author:

Brown R. James1

Affiliation:

1. University of the Faroe Islands, Faculty of Science and Technology, The PUFFINS Project, Tórshavn, Faroe Islands. .

Abstract

In four-component (4-C) towed ocean-bottom-cable (OBC) data sets, acquisition footprints are often observed. Sometimes these exhibit a spatial period equal to the length of the receiver cable. I have analyzed a 2D 4-C OBC data set, looking at common-offset gathers (COG), spectral analyses, and hodogram analyses of the direct P-wave first breaks. The acquisition footprint is seen to be directly related to the following effects observed on a few of the multicomponent receivers, namely, those nearest to the towing vessel: significant delays on the inline component though not on the downgoing direct-P first breaks; depletion of higher frequencies (narrower bandwidth) on the inline component; and oscillatory motion closer to the vertical on the direct-P first breaks equivalent to decreased amplitude on the in-line component. This is interpreted to be a result of the towing procedure wherein the leading end of the cable, with the first few receiver modules, is raised from the seafloor and laid down again, relatively lightly, on top of seafloor material that might be poorly consolidated, while the trailing receivers are pulled through and down into this material. For these leading receiver modules, this results in poor inline horizontal coupling (i.e., slipping) and delayed P-S onsets due to their vertically higher positions (relative to the trailing receivers) and quite high near-seafloor [Formula: see text] ratios. To rectify this problem in future acquisition, a longer lead-in cable should prevent lifting of the leading receivers and allow all of them to couple with the seafloor in the same way. For data already acquired with an acquisition footprint on the inline component, a two-step process involving surface-consistent deconvolution or trace equalization and static correction is proposed.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference22 articles.

1. Aki, K., and P. G. Richards, 2002, Quantitative seismology, 2nd edition: University Science Books.

2. A proposed polarity standard for multicomponent seismic data

3. Bullen, K. E. , 1965, An introduction to the theory of seismology, 3rd edition: Cambridge University Press.

4. Bullen, K. E. , and B. A. Bolt, 1985, An introduction to the theory of seismology, 4th edition: Cambridge University Press.

5. Surface‐consistent deconvolution in the log/Fourier domain

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3