Stochastic sparse-spike deconvolution

Author:

Velis Danilo R.1

Affiliation:

1. Universidad Nacional de La Plata, Facultad de Ciencias Astronómicas y Geofísicas, and Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina..

Abstract

Sparse-spike deconvolution can be viewed as an inverse problem where the locations and amplitudes of a number of spikes (reflectivity) are estimated from noisy data (seismic traces). The main objective is to find the least number of spikes that, when convolved with the available band-limited seismic wavelet estimate, fit the data within a given tolerance error (misfit). The detection of the spikes’ time lags is a highly nonlinear optimization problem that can be solved using very fast simulated annealing (SA). Amplitudes are easily estimated using linear least squares at each SA iteration. At this stage, quadratic regularization is used to stabilize the solution, to reduce its nonuniqueness, and to provide meaningful reflectivity sequences, thus avoiding the need to constrain the spikes’ time lags and/or amplitudes to force valid solutions. Impedance constraints also can be included at this stage, providing the low frequencies required to recover the acoustic impedance. One advantage of the proposed method over other sparse-spike deconvolution techniques is that the uncertainty of the obtained solutions can be estimated stochastically. Further, errors in the phase of the wavelet estimate are tolerated, for an optimum constant-phase shift is obtained to calibrate the effective wavelet that is present in the data. Results using synthetic data (including simulated data for the Marmousi2 model) and field 3D data show that physically meaningful high-resolution sparse-spike sections can be derived from band-limited noisy data, even when the available wavelet estimate is inaccurate.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3