Physics-driven cycle network for seismic impedance inversion using conditional generative adversarial networks

Author:

Wang Yaojun1ORCID,Zong Jingjing1ORCID,Wang Liangji1,Zou Bangli1,Chen Ziteng1,Luo Yang1

Affiliation:

1. School of Resources and Environment, University of Electronic Science and Technology of China (UESTC) , Chengdu 611731 , China

Abstract

Abstract Despite the extensive application of artificial neural networks in seismic inversion, their effectiveness is often hampered by the limited availability of labeled data. To address this challenge, we introduce a novel method for seismic impedance inversion. Our approach integrates a physics-driven cycle network with a conditional generative adversarial network (CGAN) and a convolutional model. Employing seismic data as the input, the CGAN capitalizes on inherent information to minimize non-uniqueness during inversion. Furthermore, the convolutional model, acting as a physics-informed operator, reverts the derived impedance data back to seismic form, enabling simultaneous training of neural networks with labeled and unlabeled data, fulfilling the seismic-to-seismic cycle. The proposed method is demonstrated to be effective on tests using both theoretical models and field data.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Industrial and Manufacturing Engineering,Geology,Geophysics

Reference23 articles.

1. Numerical applications of a formalism for geophysical inverse problems;Backus;Geophys J Int,1967

2. Wasserstein cycle-consistent generative adversarial network for improved seismic impedance inversion: example on 3D SEAM model;Cai,2020

3. Generalized linear inversion of reflection seismic data;Cooke;Geophysics,1983

4. Bayesian framework to wavelet estimation and linearized acoustic inversion;de Figueiredo;IEEE Geosci Remote Sens Lett,2014

5. Generative Adversarial Nets;Goodfellow,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3