An optimal nearly analytic discrete-weighted Runge-Kutta discontinuous Galerkin hybrid method for acoustic wavefield modeling

Author:

Yang Dinghui1,He Xijun2,Ma Xiao3,Zhou Yanjie4,Li Jingshuang5

Affiliation:

1. Tsinghua University, Department of Mathematical Sciences, Beijing, China..

2. Beijing Institute of Electronic System Engineering, Beijing, China..

3. Northwestern Polytechnical University, Department of Applied Mathematics, Xi’an, Shaanxi, China..

4. Beijing Technology and Business University (BTBU), Department of Mathematics, School of Science, Beijing, China..

5. China University of Mining and Technology (Beijing), School of Science, Beijing, China..

Abstract

The newly developed optimal nearly analytic discrete (ONAD) and the weighted Runge-Kutta discontinuous Galerkin (WRKDG) methods can effectively suppress the numerical dispersion caused by discretizing wave equations, but it is difficult for ONAD to implement on flexible meshes, whereas the WRKDG has high computational cost for wavefield simulations. We have developed a new hybrid algorithm by combining the ONAD method with the WRKDG method. In this hybrid algorithm, the computational domain was split into several subdomains, in which the subdomain for the ONAD method used regular Cartesian grids, whereas the subdomain for the WRKDG method used triangular grids. The hybrid method was at least third-order spatially accurate. We have applied the proposed method to simulate the scalar wavefields for different models, including a homogeneous model, a rough topography model, a fracture model, and a cave model. The numerical results found that the hybrid method can deal with complicated geometrical structures, effectively suppress numerical dispersion, and provide accurate seismic wavefields. Numerical examples proved that our hybrid method can significantly reduce the CPU time and save storage requirement for the tested models. This implies that the hybrid method is especially suitable for the simulation of waves propagating in complex media.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3