Mitigation of guided wave contamination in waveform tomography of marine seismic reflection data from southwestern Alaska

Author:

Vayavur Rajesh1,Calvert Andrew J.1

Affiliation:

1. Simon Fraser University, Department of Earth Sciences, Burnaby, BC, Canada..

Abstract

We have applied 2D frequency-domain acoustic waveform tomography to two different sections of a marine seismic reflection line from southwest Alaska: one section with a deep igneous basement overlain by a thick pile of sediments and the other section with a shallow basement and a thin sedimentary cover. We have evaluated the appearance of dispersive guided waves on both sections, and we have determined that with appropriate data preconditioning it is possible to invert the data using 2D acoustic waveform tomography. Where the basement is deep, we first reduced the dispersive wave contamination of the seismic field data by trace editing, band-pass filtering, and careful choice of the data window for inversion. We then tested different objective functions and inversion scheduling before selecting an approach based on the logarithmic phase, which could be followed by joint phase and amplitude inversion. Where the basement is shallow, the starting model itself, which was generated by ray-based first-arrival tomography, generated acoustic guided waves, necessitating the use of an absorbing boundary condition at the free surface. Logarithmic phase inversion was used, but the amplitude inversion did not converge. To invert seismic data from both sections, we used a layer stripping strategy in which the gradient was used at each stage of the inversion process to check the corresponding model updates. Our results were validated by comparison between synthetic and observed waveforms, comparison of residual phase error plots for the initial and final velocity models, and comparison of waveform tomography velocity models with migrated images. Waveform tomography permits interpretation of the subsurface close to the seafloor where reflection images are contaminated by water-layer multiples, and we inferred the existence of a fault zone from a low-velocity anomaly within the igneous basement.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3