Seismic wave attenuation and modulus dispersion in sandstones

Author:

Spencer James W.1,Shine Jacob2

Affiliation:

1. Retired; formerly Chevron Energy Technology Company, Geophysical Rock Properties R&D, Richmond, California, USA..

2. Chevron Energy Technology Company, Reservoir and Production Engineering, Richmond, California, USA..

Abstract

We have conducted laboratory experiments over the 1–200 Hz band to examine the effects of viscosity and permeability on modulus dispersion and attenuation in sandstones and also to examine the effects of partial gas or oil saturation on velocities and attenuations. Our results have indicated that bulk modulus values with low-viscosity fluids are close to the values predicted using Gassmann’s first equation, but, with increasing frequency and viscosity, the bulk and shear moduli progressively deviate from the values predicted by Gassmann’s equations. The shear moduli increase up to 1 GPa (or approximately 10%) with high-viscosity fluids. The P- and S-wave attenuations ([Formula: see text] and [Formula: see text]) and modulus dispersion with different fluids are indicative of stress relaxations that to the first order are scaling with frequency times viscosity. By fitting Cole-Cole distributions to the scaled modulus and attenuation data, we have found that there are similar P-wave, shear and bulk relaxations, and attenuation peaks in each of the five sandstones studied. The modulus defects range from 11% to 15% in Berea sandstone to 16% to 26% in the other sandstones, but these would be reduced at higher confining pressures. The relaxations shift to lower frequencies as the viscosity increased, but they do not show the dependence on permeability predicted by mesoscopic wave-induced fluid flow (WIFF) theories. Results from other experiments having patchy saturation with liquid [Formula: see text] and high-modulus fluids are consistent with mesoscopic WIFF theories. We have concluded that the modulus dispersion and attenuations ([Formula: see text] and [Formula: see text]) in saturated sandstones are caused by a pore-scale, local-flow mechanism operating near grain contacts.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3