Effects of fluid saturation and viscosity on seismic dispersion characteristics in Berea sandstone

Author:

Wei Qianqian1ORCID,Han De-Hua2ORCID,Li Hui3ORCID,Wang Jianhua1ORCID,Wang Yang4ORCID,Chen Jianjun1ORCID

Affiliation:

1. China National Offshore Oil Corporation, CNOOC Research Institute, Beijing, China.

2. University of Houston, Department of Earth and Atmospheric Sciences, Houston, Texas, USA. .

3. Xi’an Jiaotong University, School of Information and Communications Engineering, Xi’an, Shaanxi, China. (corresponding author)

4. SINOPEC Geophysical Research Institute, Nanjing, China.

Abstract

Despite additional availability of laboratory data from water-saturated sandstone at seismic frequencies, measurements of rock samples saturated with high viscous fluids, particularly at partial saturation, are still rare. To quantify the effects of fluid viscosity and saturation levels on seismic dispersion and attenuation characteristics, we conducted two comparative forced-oscillation measurements in partially saturated sandstone with varying fluid viscosity (e.g., water, glycerin) at seismic frequencies (2–400 Hz). The results demonstrate that fluid viscosity and saturation levels substantially influence the dispersion and attenuation characteristics at the measured frequencies. Significant dispersion and attenuation are observed in the presence of a relatively small amount of gas (approximately 6%–8%) for glycerin and water saturation cases but vary in their magnitudes and characteristic frequencies. Specifically, the maximum extensional attenuation (approximately 0.024) occurs at approximately 200 Hz for water-saturated rock at 94% saturation, whereas at approximately 30 Hz with a peak of 0.032 for glycerin-saturated rock at 92% saturation. Based on theoretical modeling analysis, we suggest that mesoscopic fluid flow might be a dominant mechanism accounting for the observed attenuation in partial water or glycerin saturation, while the microscopic (squirt) flow mechanism possibly dominates the fully saturated cases.

Publisher

Society of Exploration Geophysicists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3