Affiliation:
1. University of Houston, Department of Earth and Atmospheric Sciences, Houston, Texas, USA..
Abstract
The frequency-dependent width of the Gaussian window function used in the S-transform may not be ideal for all applications. In particular, in seismic reflection prospecting, the temporal resolution of the resulting S-transform time-frequency spectrum at low frequencies may not be sufficient for certain seismic interpretation purposes. A simple parameterization of the generalized S-transform overcomes the drawback of poor temporal resolution at low frequencies inherent in the S-transform, at the necessary expense of reduced frequency resolution. This is accomplished by replacing the frequency variable in the Gaussian window with a linear function containing two coefficients that control resolution variation with frequency. The linear coefficients can be directly calculated by selecting desired temporal resolution at two frequencies. The resulting transform conserves energy and is readily invertible by an inverse Fourier transform. This modification of the S-transform, when applied to synthetic and real seismic data, exhibits improved temporal resolution relative to the S-transform and improved resolution control as compared with other generalized S-transform window functions.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献