Experimental Co-Polarimetric GPR Survey on Artificial Vertical Concrete Cracks by the Improved Time-Varying Centroid Frequency Scheme

Author:

Zhang Xuebing12ORCID,Pei Junxuan1ORCID,Sha Xianda1,Feng Xuan2ORCID,Hu Xin13,Chen Changle2,Song Zhengchun1ORCID

Affiliation:

1. School of Geomatics and Prospecting Engineering, Jilin Jianzhu University, Changchun 130118, China

2. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China

3. Jiangxi Transportation Engineering Group Ltd., Nanchang 330038, China

Abstract

The experimental setup is devised to simulate the presence of vertical cracks with varying widths within concrete structures. Co-polarimetric ground-penetrating radar (GPR) surveys are carried out to acquire the “VV” and “HH” polarization data. The time-varying centroid frequency attribute is employed to describe the vertical variation in the center frequency of the radar wave, unveiling a gradual vertical decay in the centroid frequency at the locations of vertical cracks. An improved time-varying centroid frequency attribute based on the adaptive sparse S-transform (ASST) is proposed and tested by a finite-difference time-domain model and co-polarimetric GPR data, which can offer better resolution compared to that of the conventional S-transform. By analyzing the waveform and centroid frequency properties of the two polarizations, we conclude that the “VV” polarization is relatively sensitive to centimeter scale cracks, while the “HH” polarization is more sensitive to millimeter scale cracks.

Funder

Jilin Provincial Department of science and technology, China

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3