On the evolution of the elastic properties of organic-rich shale upon pyrolysis-induced thermal maturation

Author:

Allan Adam M.1ORCID,Clark Anthony C.1,Vanorio Tiziana1,Kanitpanyacharoen Waruntorn2,Wenk Hans-Rudolf3

Affiliation:

1. Stanford University, Stanford Rock Physics Laboratory, Stanford, California, USA..

2. Stanford University, Stanford Rock Physics Laboratory, Stanford, California, USA and Chulalongkorn University, Department of Geology, Faculty of Science, Bangkok, Thailand..

3. University of California Berkeley, Department of Earth and Planetary Science, Berkeley, California, USA..

Abstract

The evolution of the elastic properties of organic-rich shale as a function of thermal maturity remains poorly constrained. This understanding is pivotal to the characterization of source rocks and unconventional reservoirs. To better constrain the evolution of the elastic properties and microstructure of organic-rich shale, we have studied the acoustic velocities and elastic anisotropy of samples from two microstructurally different organic-rich shales before and after pyrolysis-induced thermal maturation. To more physically imitate in situ thermal maturation, we performed the pyrolysis experiments on intact core plugs under applied reservoir-magnitude confining pressures. Iterative characterization of the elastic properties of a clay-rich, laminar Barnett Shale sample documents the development of subparallel to bedding cracks by an increase in velocity sensitivity to pressure perpendicular to the bedding. These cracks, however, are not visible through time-lapse scanning electron microscope imaging, indicating either submicrometer crack apertures or predominant development within the core of the sample. At elevated confining pressures, in the absence of pore pressure, these induced cracks close, at which point, the sample is acoustically indistinguishable from the prepyrolysis sample. Conversely, a micritic Green River sample does not exhibit the formation of aligned compliant features. Rather, the sample exhibits a largely directionally independent decrease in velocity as load-bearing, pore-filling kerogen is removed from the sample. Due to the weak alignment of minerals, there is comparatively little intrinsic anisotropy; further, due to the relatively directionally independent evolution of velocity, the evolution of the anisotropy as a function of thermal maturity is not indicative of aligned compliant features. Our results have indicated that horizons of greater thermal maturity may be acoustically detectable in situ through increases in the elastic anisotropy of laminar shales or decreases in the acoustic velocities of nonlaminar shales, micritic rocks, or siltstones.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3