A multiscale methodology for the analysis of velocity anisotropy in organic-rich shale

Author:

Allan Adam M.1,Kanitpanyacharoen Waruntorn2,Vanorio Tiziana1

Affiliation:

1. Stanford University, Stanford Rock Physics Laboratory, Stanford, California, USA..

2. Presently Chulalongkorn University, Department of Geology, Faculty of Science, Bangkok, Thailand; formerly Stanford University, Stanford Rock Physics Laboratory, Stanford, California, USA..

Abstract

Changes in the sources of velocity anisotropy and their relative magnitude as maturation progresses in organic-rich shale are still incompletely characterized in the rock-physics literature. As a result of the increasing importance of organic-rich shale as unconventional reservoirs, a more thorough understanding of the elastic behavior of shale is needed. We have formulated a comprehensive, multiphysics, multiscale experimental methodology for the characterization of the intrinsic (syn-lithification) and extrinsic (postlithification) factors contributing to velocity anisotropy. Application of this methodology to unsaturated samples also enabled the characterization of the shale frame for fluid substitution modeling. The methodological framework was then tested on a set of five naturally matured organic-rich shale samples. In this experimental methodology, we combined classical rock-physics measurements, e.g., ultrasonic velocity and emergent high-resolution imaging techniques, such as X-ray diffraction (XRD), scanning electron microscopy, confocal laser scanning microscopy, and X-ray microtomography to better characterize the heterogeneous and microstructurally complex shale at all scales. The use of XRD-based lattice-preferred orientation measurements in conjunction with conventional ultrasonic velocity experiments confirmed that the degree of alignment of the mineral matrix governed the intrinsic anisotropy of organic-rich shale. The closure of soft, crack-like porosity, as identified from axial strain data, was identified as the extrinsic source governing the pressure sensitivity of velocity anisotropy. We determined, for the set of samples included in this study, that the intrinsic anisotropy was the dominant source of anisotropy at all confining pressures. Indeed, at low confining pressures, the opening of microcracks contributed no more than 30% of the total velocity anisotropy. Applying these results to saturated rocks at depth indicated that, for these shales, the extrinsic, crack-based sources, will contribute no more than 30% of the shale anisotropy in situ.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3