Free-surface multiple attenuation for blended data

Author:

Ma Jitao1,Chen Xiaohong1,Sen Mrinal K.2,Xue Yaru1

Affiliation:

1. China University of Petroleum Beijing, State Key Laboratory of Petroleum Resource and Prospecting, CNPC Key Laboratory of Geophysical Prospecting, Beijing, China..

2. University of Texas at Austin, Institute for Geophysics, Austin, Texas, USA..

Abstract

Blended data sets are now being acquired because of improved efficiency and reduction in cost compared with conventional seismic data acquisition. We have developed two methods for blended data free-surface multiple attenuation. The first method is based on an extension of surface-related multiple elimination (SRME) theory, in which free-surface multiples of the blended data can be predicted by a multidimensional convolution of the seismic data with the inverse of the blending operator. A least-squares inversion method is used, which indicates that crosstalk noise existed in the prediction result due to the approximate inversion. An adaptive subtraction procedure similar to that used in conventional SRME is then applied to obtain the blended primary — this can damage the energy of primaries. The second method is based on inverse data processing (IDP) theory adapted to blended data. We derived a formula similar to that used in conventional IDP, and we attenuated free-surface multiples by simple muting of the focused points in the inverse data space (IDS). The location of the focused points in the IDS for blended data, which can be calculated, is also related to the blending operator. We chose a singular value decomposition-based inversion algorithm to stabilize the inversion in the IDP method. The advantage of IDP compared with SRME is that, it does not have crosstalk noise and is able to better preserve the primary energy. The outputs of our methods are all blended primaries, and they can be further processed using blended data-based algorithms. Synthetic data examples show that the SRME and IDP algorithms for blended data are successful in attenuating free-surface multiples.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3