Free-surface multiple attenuation and seismic deghosting for blended data using convolutional neural networks

Author:

Kiraz Mert S. R.1ORCID,Snieder Roel2,Sheiman Jon3

Affiliation:

1. Formerly Colorado School of Mines, Center for Wave Phenomena, Golden, Colorado, USA; presently Shell International Exploration and Production, Houston, Texas, USA. (corresponding author)

2. Colorado School of Mines, Center for Wave Phenomena, Golden, Colorado, USA.

3. Retired, Houston, Texas, USA.

Abstract

Simultaneous source acquisition has become common over the past few decades for marine seismic surveys because of the increased efficiency of seismic acquisition by limiting the time, reducing the cost, and having less environmental impact than conventional single-source (or unblended) acquisition surveys. For simultaneous source acquisition, seismic sources at different locations are fired with time delays, and the recorded data are referred to as the blended data. The air-water interface (or free surface) creates strong multiples and ghost reflections for blended seismic data. The multiples and/or ghost reflections caused by a source in the blended data overlap with the primary reflections of another source, thus creating a strong interference between the primary and multiple events of different sources. We develop a convolutional neural network (CNN) method to attenuate free-surface multiples and remove ghost reflections simultaneously from the blended seismic data. The CNN-based solution that we develop operates on single traces and is not sensitive to the missing near-offset traces, missing traces, and irregular/sparse acquisition parameters (e.g., for ocean-bottom node acquisition and time-lapse monitoring studies). We illustrate the efficacy of our free-surface multiple attenuation and seismic deghosting method by presenting synthetic and field data applications. The numerical experiments demonstrate that our CNN-based approach for simultaneously attenuating free-surface multiples and removing ghost reflections can be applied to the blended data without the deblending step. Although the interference of primaries and multiples from different shots in the blended data makes free-surface multiple attenuation harder than the unblended data, we determine that our CNN-based method effectively attenuates free-surface multiples in the blended synthetic and field data even when the delay time for the blending is different in the training data than in the data to which the CNN is applied.

Funder

Seismic Inverse Methods for Complex Structures

Publisher

Society of Exploration Geophysicists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3