Phase and amplitude tracking for seismic event separation

Author:

Li Yunyue Elita1,Demanet Laurent1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, Massachusetts, USA..

Abstract

We have developed a method to decompose seismic records into atomic events, each defined by a smooth phase function and a smooth amplitude function. This decomposition is intrinsically nonlinear and calls for a nonconvex least-squares optimization formulation, along the lines of full-waveform inversion. To overcome the lack of convexity, we have developed an iterative refinement-expansion scheme to initialize and track the phase and amplitude for each atomic event. For short, we called the method phase tracking. The initialization is carried out by applying multiple signal classification to a few seed traces in which events can be separated and identified by their arrival times and amplitudes. We then construct the initial solution at the seed traces using linear phase functions from the arrival times and constant amplitude functions, assuming the medium is mostly dispersion free. We refine this initial solution to account for dispersion and imperfect knowledge of the wavelet at the seed traces by fitting the observed data using a gradient descent method. The resulting phase and amplitude functions are then carefully expanded across the traces in an adequately smooth way to match the whole data record. We have evaluated the proposed method on two synthetic records and a field record. Because the parametrization of the seismic events is physically meaningful, it also enables a simple form of bandwidth extension of the observed shot record to unobserved low and high frequencies. We tested this procedure on the same shot records. Bandwidth extension is in principle helpful to initialize full-waveform inversion with frequency sweeps and enhanced its resolution.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3