Removing false images in reverse time migration: The concept of de-primary

Author:

Fei Tong W.1,Luo Yi1,Yang Jiarui1,Liu Hongwei1,Qin Fuhao1

Affiliation:

1. EXPEC Advanced Research Center, Saudi Aramco, Dhahran, Saudi Arabia..

Abstract

Primary reflections, like multiples, can generate false images when reverse time migration (RTM) algorithms are used. The false images are formed by the zero-lag correlation of the source wavefields and primary reflections, which are propagated by the migration algorithm along nonphysical paths. These paths are generated by strong velocity gradients or reflection interfaces when the two-way wave equation is used. Conceptually, this type of artifact can be removed by separating up- and downgoing waves, but such separation may be impractical because it often requires storing the entire wavefields at all time steps. We have developed a de-primary RTM method in which such separation can be accomplished without saving the wavefields. The computational cost of the proposed method was only approximately 33% higher than that of conventional RTM algorithms. Using field and synthetic data sets, we have demonstrated the existence of this endemic RTM problem and verified the effectiveness of the de-primary RTM technique for removing the false events.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference14 articles.

1. Reverse time migration

2. Etgen, J., 1986, High-order finite-difference reverse time migration with the two-way nonreflecting wave equation: Stanford Exploration Project, Report 48, 133–146.

3. An overview of depth imaging in exploration geophysics

4. Elimination of numerical dispersion in finite‐difference modeling and migration by flux‐corrected transport

5. An endemic problem in reverse-time migration

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3