An overview of depth imaging in exploration geophysics

Author:

Etgen John123,Gray Samuel H.123,Zhang Yu123

Affiliation:

1. BP America, E&P Technology Group, Houston, Texas, U.S.A. .

2. CGGVeritas, Calgary, Alberta, Canada. .

3. CGGVeritas, Houston, Texas, U.S.A. .

Abstract

Prestack depth migration is the most glamorous step of seismic processing because it transforms mere data into an image, and that image is considered to be an accurate structural description of the earth. Thus, our expectations of its accuracy, robustness, and reliability are high. Amazingly, seismic migration usually delivers. The past few decades have seen migration move from its heuristic roots to mathematically sound techniques that, using relatively few assumptions, render accurate pictures of the interior of the earth. Interestingly, the earth and the subjects we want to image inside it are varied enough that, so far, no single migration technique has dominated practical application. All techniques continually improve and borrow from each other, so one technique may never dominate. Despite the progress in structural imaging, we have not reached the point where seismic images provide quantitatively accurate descriptions of rocks and fluids. Nor have we attained the goal of using migration as part of a purely computational process to determine subsurface velocity. In areas where images have the highest quality, we might be nearing those goals, collectively called inversion. Where data are more challenging, the goals seem elusive. We describe the progress made in depth migration to the present and the most significant barriers to attaining its inversion goals in the future. We also conjecture on progress likely to be made in the years ahead and on challenges that migration might not be able to meet.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 290 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3