A source-synchronous filter for uncorrelated receiver traces from a swept-frequency seismic source

Author:

Lord Neal1,Wang Herbert1,Fratta Dante2

Affiliation:

1. University of Wisconsin-Madison, Geoscience, Madison, Wisconsin, USA..

2. University of Wisconsin-Madison, Geological Engineering and Civil & Environmental Engineering, Madison, Wisconsin, USA..

Abstract

We have developed a novel algorithm to reduce noise in signals obtained from swept-frequency sources by removing out-of-band external noise sources and distortion caused from unwanted harmonics. The algorithm is designed to condition nonstationary signals for which traditional frequency-domain methods for removing noise have been less effective. The source synchronous filter (SSF) is a time-varying narrow band filter, which is synchronized with the frequency of the source signal at all times. Because the bandwidth of the filter needs to account for the source-to-receiver propagation delay and the sweep rate, SSF works best with slow sweep rates and moveout-adjusted waveforms to compensate for source-receiver delays. The SSF algorithm was applied to data collected during a field test at the University of California Santa Barbara’s Garner Valley downhole array site in Southern California. At the site, a 45 kN shaker was mounted on top of a one-story structure and swept from 0 to 10 Hz and back over 60 s (producing useful seismic waves greater than 1.6 Hz). The seismic data were captured with small accelerometer and geophone arrays and with a distributed acoustic sensing array, which is a fiber-optic-based technique for the monitoring of elastic waves. The result of the application of SSF on the field data is a set of undistorted and uncorrelated traces that can be used in different applications, such as measuring phase velocities of surface waves or applying convolution operations with the encoder source function to obtain traveltimes. The results from the SSF were used with a visual phase alignment tool to facilitate developing dispersion curves and as a prefilter to improve the interpretation of the data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference17 articles.

1. Acquisition and processing of simultaneous vibroseis data

2. Baldwin, J. A., D. Fratta, H. F. Wang, N. E. Lord, A. Chalari, R. Karaulanov, R. L. Nigbor, C. Lancelle, and E. Castongia, 2014, Using distributed acoustic sensing (DAS) for multichannel analysis of surface waves (MASW) to evaluate ground stiffness: Presented at the 2014 Fall Meeting, AGU, Abstract NS31C-3938.

3. Frequency‐time decomposition of seismic data using wavelet‐based methods

4. Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle, Alabama

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3