Detecting gas leakage using high-frequency signals generated by air-gun arrays

Author:

Landrø Martin1ORCID,Hansteen Fredrik2,Amundsen Lasse1ORCID

Affiliation:

1. Norwegian University of Science and Technology (NTNU), Department of Petroleum Engineering and Applied Geophysics, Trondheim, Norway..

2. Statoil, Bergen, Norway..

Abstract

Recent field experiments have demonstrated that marine air-gun arrays create acoustic energy greater than 1 kHz. We have suggested to use the high-frequency signal as a source to look for gas leakage at, for instance, a producing hydrocarbon field, or a [Formula: see text] storage site in which the field is covered by permanent acoustic sensors at the seabed, often referred to as a permanent reservoir monitoring field. The only needed modification is that the temporal sampling interval for the receivers is decreased to 0.1 ms (in contrast to the normal sampling interval of 1 or 2 ms), to ensure that the system is capable of recording signals up to 5 kHz. We suggest using numerous fixed receivers at the seabed to detect a gas chimney by simple high-pass filtering and subsequent transmission type analysis of the recorded signals. We think this method might serve as an elegant, precise, and very cost-effective way to detect gas leakage into the water layer.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3