High-resolution seismic complex trace analysis by adaptive fast sparse S-transform

Author:

Sattari Hamid1

Affiliation:

1. University of Tehran, Institute of Geophysics, Tehran, Iran..

Abstract

Complex trace analysis provides seismic interpreters with a view to identify the nature of challenging subsurface geologic features. However, the conventional procedure based on the Hilbert transform (HT) is highly sensitive to random noise and sudden frequency variations in seismic data. Generally, conventional filtering methods reduce the spectral bandwidth while stabilizing complex trace analysis, whereas obtaining high-resolution images of multiple thin-bed layers requires wideband data. It is thus a challenging problem to reconcile the conflict between the two purposes, and a powerful signal processing device is required. To overcome the issue, I first introduced the fast sparse S-transform (ST) as a powerful time-frequency decomposition method to improve the windowed Hilbert transform (WHT). Then, in addition to the mixed-norm higher resolution provided by the fast sparse ST, I have developed a novel sparsity-based optimization for window parameters. The process adaptively regularizes sudden changes in frequency content of nonstationary signals with the same computational complexity of the nonoptimized algorithm. The performance of the proposed windowing optimization is compared with those of available methods that have so far been used for adaptivity enhancement of Fourier-based spectral decomposition methods. The final adaptive and sparse version of WHT is used to achieve high-resolution complex trace analysis and address the above-mentioned conflict. The instantaneous complex attributes obtained by the proposed method for several synthetic and real data sets of which multiple thin-bed layers contain wedges, trapped gas reservoirs, and faults are superior to those obtained by WHT via adaptive sparse STFT, robust adaptive WHT, and conventional HT. Potential applications of the adaptive double-sparse ST as a new spectral decomposition method were also evaluated.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3