Estimating and interpreting velocity uncertainty in migrated images and AVO attributes

Author:

Grubb H.1,Tura A.2,Hanitzsch C.2

Affiliation:

1. University of Reading, Department of Applied Statistics, P.O. Box 240, Reading RG6 6FN, United Kingdom

2. TotalFinaElf Exploration UK, London

Abstract

Estimating a suitable velocity field for use in prestack depth migration is inherently uncertain because of limitations on the available data and estimation techniques. This uncertainty affects both the migrated depth of structures and their amplitudes in the inverted images. These effects can be estimated by performing multiple migrations with a set of velocity fields and colocating features in the migrated images. This lets us examine the imaging procedure’s sensitivity to changes in the velocity field so we can assess both structural and amplitude uncertainties in migrated images. These two types of uncertainties affect interpretation in different ways. For instance, with structural uncertainty interpretation we consider the change in migrated location of structures when deciding on drilling locations, optimizing well trajectories, or computing uncertainty in volumetric calculations. With amplitude uncertainty or amplitude versus offset (AVO) uncertainty interpretation, we consider (1) uncertainty in crossplots of pairs of AVO attributes at a point of interest or (2) uncertainty of the attribute values along identified structures. For any interpretation informing a decision, the uncertainty can help estimate risk. Our data processing approach is based on amplitude‐preserving prestack depth migration followed by AVO inversion, or AVO migration/inversion. It is valid for estimating AVO attributes in simple to moderately complex structural settings. Our methods of assessing the effect of velocity uncertainty can also be applied when obtaining structural uncertainties for a complex overburden geology or amplitude uncertainties in conventional NMO‐based AVO analysis. They may also be applied straightforwardly to any poststack attribute analysis. Key to the approach is the availability of multiple velocity fields to generate multiple migrated images. In our application, an automatic algorithm samples possible fields, but the set of fields to consider could be generated from another source, such as interpretation.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3