A new technique for lithology and fluid content prediction from prestack data: An application to a carbonate reservoir
Author:
Affiliation:
1. Paradigm, Paris, Ile de France, France..
2. Paradigm, Pau, France..
3. Total, Pau, France..
4. Paradigm, Houston, Texas, USA..
Abstract
Publisher
Society of Exploration Geophysicists
Subject
Geology,Geophysics
Link
https://library.seg.org/doi/pdf/10.1190/INT-2014-0049.1
Reference15 articles.
1. Gao, J., W. Fan, and J. Han, 2010, On the power of ensemble: Supervised and unsupervised methods reconciled: Presented at SIAM Data Mining Conference.
2. Guillaumin, M., J. Verbeek, and C. Schmid, 2010, Multimodal semi-supervised learning for image classification: Presented at IEEE Conference on Computer Vision and Pattern Recognition.
3. Hami-Eddine, K., P. Klein, and L. Richard, 2009, Well-facies-based supervised classification of prestack seismic: Application to a turbidite field: 79th Annual International Meeting, SEG, Expanded Abstracts, 1885–1889.
4. Hami-Eddine, K., P. Klein, L. Richard, D. Elabed, E. Chatila, and A. Furniss, 2011, Multivariate supervised classification, application to a New Zealand Offshore Field: Presented at 31st Annual International Meeting, Gulf Coast Section of Society of Economic Paleontologists and Mineralogists.
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Porosity prediction from prestack seismic data via deep learning: incorporating a low-frequency porosity model;Journal of Geophysics and Engineering;2023-09-01
2. Delineation of thin and discrete sand reservoir facies from shale-dominated Kopili Formation (Middle to Late Eocene) using the post-stack seismic inversion and neural network algorithm: A case study from Assam Basin, India;Journal of Earth System Science;2023-05-05
3. Lithofacies Based Fluid Prediction Using Machine Learning;Day 1 Mon, October 31, 2022;2022-10-31
4. Petrophysical Analysis of ‘Bright’ Field, Onshore Niger Delta;Advances in Earth and Environmental Science;2021-10-30
5. Deep carbonate reservoir characterisation using multi-seismic attributes via machine learning with physical constraints;Journal of Geophysics and Engineering;2021-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3