Porosity prediction from prestack seismic data via deep learning: incorporating a low-frequency porosity model

Author:

Liu Jingyu12,Zhao Luanxiao12ORCID,Xu Minghui12,Zhao Xiangyuan3,You Yuchun3,Geng Jianhua12

Affiliation:

1. State Key Laboratory of Marine Geology, Tongji University , Shanghai 200092 , China

2. School of Ocean and Earth Sciences, Tongji University , Shanghai 200092 , China

3. Petroleum Exploration and Production Research Institute, SINOPEC , Beijing 1000083 , China

Abstract

Abstract Porosity prediction from seismic data is of considerable importance in reservoir quality assessment, geological model building, and flow unit delineation. Deep learning approaches have demonstrated great potential in reservoir characterization due to their strong feature extraction and nonlinear relationship mapping abilities. However, the reliability of porosity prediction is often compromised by the lack of low-frequency information in bandlimited seismic data. To address this issue, we propose incorporating a low-frequency porosity model based on geostatistical methodology, into the supervised convolutional neural network to predict porosity from prestack seismic angle gather and seismic inversion results. Our study demonstrates that the inclusion of the low-frequency porosity model significantly improves the reliability of porosity predictions in a heterogeneous carbonate reservoir. The low-frequency information can be compensated to enhance the network's capabilities of capturing the background porosity trend. Additionally, the blind well tests validate that considering the low-frequency constraint leads to stronger model prediction and generalization abilities, with the root mean square error of the two blind wells reduced by up to 34%. The incorporation of the low-frequency reservoir model in network training also remarkably enhances the geological continuity of seismic porosity prediction, providing more geologically reasonable results for reservoir characterization.

Funder

National Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Industrial and Manufacturing Engineering,Geology,Geophysics

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3