Anisotropic finite-difference algorithm for modeling elastic wave propagation in fractured coalbeds

Author:

Pei Zhenglin1234,Fu Li-Yun1234,Sun Weijia1234,Jiang Tao1234,Zhou Binzhong1234

Affiliation:

1. Institute of Geology and Geophysics, Chinese Academy of Sciences, Key Laboratory of Petroleum Resource Research, Beijing China and North NewTech PetroTech Ltd., Beijing, China..

2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Key Laboratory of Petroleum Resource Research, Beijing China..

3. Institute of Geology and Geophysics, Chinese Academy of Sciences, Key Laboratory of Petroleum Resource Research, Beijing China and University of Houston Houston, Texas, USA..

4. CSIRO Earth Science and Resource Engineering, Kenmore, Australia..

Abstract

The simulation of wave propagations in coalbeds is challenged by two major issues: (1) strong anisotropy resulting from high-density cracks/fractures in coalbeds and (2) numerical dispersion resulting from high-frequency content (the dominant frequency can be higher than 100 Hz). We present a staggered-grid high-order finite-difference (FD) method with arbitrary even-order ([Formula: see text]) accuracy to overcome the two difficulties stated above. First, we derive the formulae based on the standard Taylor series expansion but given in a neat and explicit form. We also provide an alternative way to calculate the FD coefficients. The detailed implementations are shown and the stability condition for anisotropic FD modeling is examined by the eigenvalue analysis method. Then, we apply the staggered-grid FD method to 2D and 3D coalbed models with dry and water-saturated fractures to study the characteristics of the 2D/3C elastic wave propagation in anisotropic media. Several factors, like density and direction of vertical cracks, are investigated. Several phenomena, like S-wave splitting and waveguides, are observed and are consistent with those observed in a real data set. Numerical results show that our formulae can correlate the amplitude and traveltime anisotropies with the coal seam fractures.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3