A spectral scheme for wave propagation simulation in 3-D elastic‐anisotropic media

Author:

Carcione José M.1,Kosloff Dan2,Behle Alfred3,Seriani Geza4

Affiliation:

1. Osservatorio Geofisico Sperimentale, P.O. Box 2011, 34016 Trieste, Italy and Geophysical Institute, Hamburg University, Bundesstrasse 55, 2000 Hamburg 13, Germany

2. Department of Geophysics and Planetary Sciences, Tel‐Aviv University, Tel‐Aviv 69978, Israel, and Geophysical Institute, Hamburg University, Bundesstrasse 55, 2000 Hamburg 13, Germany

3. Geophysical Institute, Hamburg University, Bundesstrasse 55, 2000 Hamburg 13, Germany

4. Osservatorio Geofisico Sperimentale, P.O. Box 2011, 34016 Trieste, Italy

Abstract

This work presents a new scheme for wave propagation simulation in three‐dimensional (3-D) elastic-anisotropic media. The algorithm is based on the rapid expansion method (REM) as a time integration algorithm, and the Fourier pseudospectral method for computation of the spatial derivatives. The REM expands the evolution operator of the second‐order wave equation in terms of Chebychev polynomials, constituting an optimal series expansion with exponential convergence. The modeling allows arbitrary elastic coefficients and density in lateral and vertical directions. Numerical methods which are based on finite‐difference techniques (in time and space) are not efficient when applied to realistic 3-D models, since they require considerable computer memory and time to obtain accurate results. On the other hand, the Fourier method permits a significant reduction of the working space, and the REM algorithm gives machine accuracy with half the computational effort as the usual second-order temporal differencing scheme. The new algorithm provides spectral accuracy for band limited wave propagation with no temporal or spatial dispersion. Hence, the combination REM/Fourier method could be considered at present the fastest and the most accurate of all the algorithms based on spectral methods in terms of efficiency of computer time. The technique is successfully tested with the analytical solution in the symmetry axis of a 3-D homogeneous transversely isotropic solid. Computed radiation patterns in clay shale and sandstone show the characteristics predicted by the theory. A final example computes synthetic seismograms showing the effects of shear‐wave splitting of a model where an azimuthally anisotropic cracked shale layer is inside a transversely isotropic sandstone.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3