New full-wave phase-shift approach to solve the Helmholtz acoustic wave equation for modeling

Author:

Maji Kaushik123,Gao Fuchun123,Abeykoon Sameera K.123,Kouri Donald J.123

Affiliation:

1. University of Houston, Departments of Chemistry, Mathematics, Mechanical Engineering and Physics, Houston, Texas, USA..

2. Total E & P Research and Technology, Houston, Texas, USA..

3. Formerly University of Houston, Departments of Chemistry, Mathematics, Mechanical Engineering and Physics, Houston, Texas, USA; presently Brookhaven National Laboratory, Upton, New York, USA..

Abstract

We have developed a method of solving the Helmholtz equation based on a new way to generalize the “one-way” wave equation, impose correct boundary conditions, and eliminate exponentially growing evanescent waves. The full two-way nature of the Helmholtz equation is included, but the equation is converted into a pseudo one-way form in the framework of a generalized phase-shift structure consisting of two coupled first-order partial differential equations for wave propagation with depth. A new algorithm, based on the particular structure of the coupling between [Formula: see text] and [Formula: see text], is introduced to treat this problem by an explicit approach. More precisely, in a depth-marching strategy, the wave operator is decomposed into the sum of two matrices: The first one is a propagator in a reference velocity medium, whereas the second one is a perturbation term which takes into account the vertical and lateral variation of the velocity. The initial conditions are generated by solving the Lippmann-Schwinger integral equation formally, in a noniterative fashion. The approach corresponds essentially to “factoring out” the physical boundary conditions, thereby converting the inhomogeneous Lippmann-Schwinger integral equation of the second kind into a Volterra integral equation of the second kind. This procedure supplies artificial boundary conditions, along with a rigorous method for converting these solutions to those satisfying the correct, Lippmann-Scwinger (physical) boundary conditions. To make the solution numerically stable, the Feshbach projection operator technique is used to remove only the nonphysical exponentially growing evanescent waves, while retaining the exponentially decaying evanescent waves, along with all propagating waves. Suitable absorbing boundary conditions are implemented to deal with reflection or wraparound from boundaries. At the end, the Lippmann-Schwinger solutions are superposed to produce time snapshots of the propagating wave.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scattering theory and Volterra renormalization for wave modeling in heterogeneous acoustic media;SEG Technical Program Expanded Abstracts 2015;2015-08-19

2. Time-domain solution of poroelastic wave equation with dynamic permeability;SEG Technical Program Expanded Abstracts 2015;2015-08-19

3. Multi-dimensional Inverse acoustic scattering series using the Volterra renormalization of the Lippmann-Schwinger equation;SEG Technical Program Expanded Abstracts 2014;2014-08-05

4. zRTM with depth extrapolation in space and wavenumber dual-domain;SEG Technical Program Expanded Abstracts 2014;2014-08-05

5. Polarization of plane wave propagating inside elastic hexagonal system solids;Science China Physics, Mechanics and Astronomy;2014-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3