Investigation of pore structure characteristics of marine organic-rich shales using low-pressure N2 adsorption experiments and fractal theory

Author:

Zhao Difei1,Yin Shuai2,Guo Yinghai1,Ren Chengyao3,Wang Ruyue4,Dinge Wenlong5,Liue Jingshou5

Affiliation:

1. China University of Mining and Technology, School of Resources and Geosciences, Xuzhou 221116, China and Chongqing Institute of Geology and Mineral Resources, Ministry of Natural Resources, Key Laboratory of Shale Gas Exploration, Chongqing 401120, China..

2. Shandong University of Science and Technology, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Qingdao 266590, China.(corresponding author).

3. China University of Mining and Technology, School of Resources and Geosciences, Xuzhou 221116, China..

4. SINOPEC, Petroleum Exploration and Production Research Institute, Beijing 100083, China..

5. China University of Geosciences, School of Energy Resources, Beijing 100083, China..

Abstract

The pore structure and fractal characteristics of the Lower Cambrian marine organic-rich shale in southern China were comprehensively studied using low-pressure [Formula: see text] adsorption and organic geochemical experiments, X-ray diffraction, petrophysical property tests, and scanning electron microscope observations. The results indicate that the total organic carbon (TOC) content of the study shale varies between 0.45% and 8.50%, with an average value of 3.97%. The adsorption isotherm of the shale samples belongs to type IV, and slit-type pores are the predominant pore type in these shales. The shale has a Brunner–Emmet–Teller specific surface area ranging from 1.83 to [Formula: see text], a pore volume ranging from 0.00398 to [Formula: see text], and an average pore diameter ranging from 3.61 to 15.19 nm. Organic matter pores (OMPs) are the main contributors to the specific surface area and the pore volume. The organic matter is closely symbiotic with the epigenetic quartz. We have obtained two fractal dimensions ([Formula: see text] and [Formula: see text]) of the shale using the Frenkel-Halsey-Hill method. It was found that [Formula: see text] is suitable for the quantitative characterizing of the pore structure of nanopores inside the shale due to its good correlation with the TOC content and pore structure parameters. When the TOC content of the shale exceeds 4%, the main pore type inside the shale is OMP and the [Formula: see text] value mainly reflects the fractal characteristics of OMP. Moreover, we analyzed the seepage characteristics of different types of pores. It was found that the parallel plate-like pores and the slit-type pores are more favorable for fluid seepage than the ink bottle-like pores. The shale with [Formula: see text] and [Formula: see text] type pore structures should be the key exploration targets for the target shale in the study area.

Funder

Open Foundation of Shandong Provincial Laboratory of Depositional Mineralization & Sedimentary Mineral Shandong University of Science Technology

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3