Quantitative characterization of organic and inorganic pores in shale based on deep learning

Author:

Yan Bohong1ORCID,Sun Langqiu2ORCID,Zhao Jianguo2,Cao Zixiong3ORCID,Li Mingxuan1ORCID,Shiba K. C.1ORCID,Liu Xinze4ORCID,Li Chuang5ORCID

Affiliation:

1. China University of Petroleum, National Key Laboratory of Petroleum Resources and Engineering, Beijing, China.

2. China University of Petroleum, National Key Laboratory of Petroleum Resources and Engineering, Beijing, China. (corresponding author)

3. Object Research Systems (ORS) Company, Montreal, QC, Canada.

4. Yumen Oil Field Branch of China National Petroleum Corporation (CNPC) Exploration and Development Research Institute, Jiuquan, China.

5. China National Petroleum Corporation (CNPC), Lanzhou, China.

Abstract

Organic matter (OM) maturity is closely related to organic pores in shales. Quantitative characterization of organic and inorganic pores in shale is crucial for rock-physics modeling and reservoir porosity and permeability evaluation. Focused ion beam-scanning electron microscopy (FIB-SEM) can capture high-precision three-dimensional (3D) images and directly describe the types, shapes, and spatial distribution of pores in shale gas reservoirs. However, due to the high scanning cost, wide 3D view field, and complex microstructure of FIB-SEM, more efficient segmentation for the FIB-SEM images is required. For this purpose, a multiphase segmentation workflow in conjunction with a U-net is developed to segment pores from the matrix and distinguish organic pores from inorganic pores simultaneously in the entire 3D image stack. The workflow is repeated for FIB-SEM data sets of 17 organic-rich shales with various characteristics. The analysis focuses on improving the efficiency and relevance of the workflow, that is, quantifying the minimum number of training slices while ensuring accuracy and further combining the fractal dimension (FD) and lacunarity to study a simple and objective method of selection. Meanwhile, the computational efficiency, accuracy, and robustness to noise of the 2D U-net model are discussed. The intersection over the union of automatic segmentation can amount to 80%–95% in all data sets with manual labels as ground truth. In addition, calculated by the FIB-SEM multiphase segmentation, the organic porosity is used to quantitatively evaluate the OM decomposition level. Deep-learning-based segmentation shows great potential for characterizing shale pore structures and quantifying OM maturity.

Funder

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3