Coherence attribute applications on seismic data in various guises — Part 1

Author:

Chopra Satinder1ORCID,Marfurt Kurt J.2ORCID

Affiliation:

1. TGS, Arcis Seismic Solutions, Calgary, Alberta, Canada..

2. The University of Oklahoma, Norman, Oklahoma, USA..

Abstract

The iconic coherence attribute is very useful for imaging geologic features such as faults, deltas, submarine canyons, karst collapse, mass-transport complexes, and more. In addition to its preconditioning, the interpretation of discrete stratigraphic features on seismic data is also limited by its bandwidth, where in general the data with higher bandwidth yield crisper features than data with lower bandwidth. Some form of spectral balancing applied to the seismic amplitude data can help in achieving such an objective so that coherence run on spectrally balanced seismic data yields a better definition of the geologic features of interest. The quality of the generated coherence attribute is also dependent in part on the algorithm used for its computation. In the eigenstructure decomposition procedure for coherence computation, spectral balancing equalizes each contribution to the covariance matrix, and thus it yields crisper features on coherence displays. There are other ways to modify the spectrum of the input data in addition to simple spectral balancing, including the amplitude-volume technique, taking the derivative of the input amplitude, spectral bluing, and thin-bed spectral inversion. We compare some of these techniques, and show their added value in seismic interpretation, which forms part of the more elaborate exercise that we had carried out. In other work, we discuss how different spectral components derived from the input seismic data allow interpretation of different scales of discontinuities, what additional information is provided by coherence computed from narrow band spectra, and the different ways to integrate them.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference16 articles.

1. 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube

2. Bakker, P., 2003, Image structure analysis for seismic interpretation: Ph.D. thesis, Technische Universiteit Delft.

3. Least squares dip and coherency attributes

4. Bulhoes, E. M., 1999, Tecnica “Volume de Amplitudes” para mapeamento de feicoes estruturais: Anais do VI Congresso Internacional da Sociedade Brasileira de Geofisica (in Portuguese).

5. Princípio da SismoCamada Elementar e sua aplicação à Técnica Volume de Amplitudes (tecVA)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3