Seismic prediction of soil distribution for the Chang-Bin offshore wind farm in the Taiwan Strait

Author:

Han Wei-Chung1ORCID,Lu Yi-Wei1,Lo Sheng-Chung1

Affiliation:

1. Industrial Technology Research Institute, Green Energy and Environment Research Laboratories, Tainan City 71150, Taiwan.(corresponding author); .

Abstract

Direct soil measurements are limited to borehole locations and are therefore sparse in the oceans. To effectively characterize the soil distributions for the Chang-Bin offshore wind farm, which is an area with the greatest wind energy potential in the Taiwan Strait, we have developed a workflow to predict the soil distribution in the subsurface based on integrated analysis of seismic data and borehole data. First, we characterize the key seismic units and their seismic response in order to understand the regional stratigraphy. Then, we correlate the soil types to each stratigraphic unit as the constraint for the input and quality control to train a neural network based on seismic multiattribute analysis. Finally, we develop a neural network that is suitable for soil prediction in the Chang-Bin offshore wind farm. Five seismic units identified from the seismic profiles reveal that the regional stratigraphy has been greatly affected by sea-level change and the sediment transportation process. Confirmed by independent in situ borehole data, the neural network is considered reliable up to 60 m below the seafloor, whereas decreased signal-to-noise ratios at greater depths lead to poorer prediction accuracy. Compared to previous studies that mainly are based on high-quality 3D seismic and well logging data, our method can predict the soil distribution by analyzing 2D seismic profiles and simplified soil layers alone. The prediction results reveal detailed lithologic variations that are tested by in situ borehole measurements. Therefore, we are confident that this approach could effectively obtain the soil distribution prediction and thus reduce the costs in offshore engineering applications.

Funder

Bureau of Energy, Ministry of Economic Affairs, Republic of Taiwan

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3