Permeability and borehole Stoneley waves: Comparison between experiment and theory

Author:

Winkler Kenneth W.1,Liu Hsui‐Lin1,Johnson David Linton1

Affiliation:

1. Schlumberger‐Doll Research, Old Quarry Road, Ridgefield, Connecticut 06877-4108

Abstract

We performed laboratory experiments to evaluate theoretical models of borehole. Stoneley wave propagation in permeable materials. A Berea sandstone and synthetic samples made of cemented glass beads were saturated with silicone oils. We measured both velocity and attenuation over a frequency band from 10 kHz to 90 kHz. Our theoretical modeling incorporated Biot theory and Deresiewicz‐Skalak boundary conditions into a cylindrical geometry and included frequency‐dependent permeability. By varying the viscosity of the saturating pore fluid, we were able to study both low‐frequency and high‐frequency regions of Biot theory, as well as the intermediate transition zone. In both low‐frequency and high‐frequency regions of the theory, we obtained excellent agreement between experimental observations and theoretical predictions. Velocity and attenuation (1/Q) are frequency‐dependent, especially at low frequencies. Also at low frequencies, velocity decreases and attenuation increases with increasing fluid mobility (permeability/viscosity). More complicated behavior is observed at high frequencies. These results support recent observations from the oil field suggesting that Stoneley wave velocity and attenuation may be indicative of formation permeability.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3