New insights into permeability determination by coupling Stoneley wave propagation and conventional petrophysical logs in carbonate oil reservoirs

Author:

Rostami Alireza,Kordavani Ali,Parchekhari Shahin,Hemmati-Sarapardeh Abdolhossein,Helalizadeh Abbas

Abstract

AbstractThe need to determine permeability at different stages of evaluation, completion, optimization of Enhanced Oil Recovery (EOR) operations, and reservoir modeling and management is reflected. Therefore, various methods with distinct efficiency for the evaluation of permeability have been proposed by engineers and petroleum geologists. The oil industry uses acoustic and Nuclear Magnetic Resonance (NMR) loggings extensively to determine permeability quantitatively. However, because the number of available NMR logs is not enough and there is a significant difficulty in their interpreting and evaluation, the use of acoustic logs to determine the permeability has become very important. Direct, continuous, and in-reservoir condition estimation of permeability is a unique feature of the Stoneley waves analysis as an acoustic technique. In this study, five intelligent mathematical methods, including Adaptive Network-Based Fuzzy Inference System (ANFIS), Least-Square Support Vector Machine (LSSVM), Radial Basis Function Neural Network (RBFNN), Multi-Layer Perceptron Neural Network (MLPNN), and Committee Machine Intelligent System (CMIS), have been performed for calculating permeability in terms of Stoneley and shear waves travel-time, effective porosity, bulk density and lithological data in one of the naturally-fractured and low-porosity carbonate reservoirs located in the Southwest of Iran. Intelligent models have been improved with three popular optimization algorithms, including Coupled Simulated Annealing (CSA), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). Among the developed models, the CMIS is the most accurate intelligent model for permeability forecast as compared to the core permeability data with a determination coefficient (R2) of 0.87 and an average absolute deviation (AAD) of 3.7. Comparing the CMIS method with the NMR techniques (i.e., Timur-Coates and Schlumberger-Doll-Research (SDR)), the superiority of the Stoneley method is demonstrated. With this model, diverse types of fractures in carbonate formations can be easily identified. As a result, it can be claimed that the models presented in this study are of great value to petrophysicists and petroleum engineers working on reservoir simulation and well completion.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference94 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3