2‐D wavepath migration

Author:

Sun H.,Schuster G. T.1

Affiliation:

1. University of Utah, Department of Geology and Geophysics, 717 WBB, 135 South 1460 East, Salt Lake City, Utah 84112. Emails:

Abstract

Prestack Kirchhoff migration (KM) is computationally intensive for iterative velocity analysis. This is partly because each time sample in a trace must be smeared along a quasi‐ellipsoid in the model. As a less costly alternative, we use the stationary phase approximation to the KM integral so that the time sample is smeared along a small Fresnel zone portion of the quasi‐ellipsoid. This is equivalent to smearing the time samples in a trace over a 1.5‐D fat ray (i.e., wavepath), so we call this “wavepath migration” (WM). This compares to standard KM, which smears the energy in a trace along a 3‐D volume of quasi‐concentric ellipsoids. In principle, single trace migration with WM has a computational count of [Formula: see text] compared to KM, which has a computational count of [Formula: see text], where N is the number of grid points along one side of a cubic velocity model. Our results with poststack data show that WM produces an image that in some places contains fewer migration artifacts and is about as well resolved as the KM image. For a 2‐D poststack migration example, the computation time of WM is less than one‐third that of KM. Our results with prestack data show that WM images contain fewer migration artifacts and can define the complex structure more accurately. It is also shown that WM can be significantly faster than KM if a slant stack technique is used in the migration. The drawback with WM is that it is sometimes less robust than KM because of its sensitivity to errors in estimating the incidence angles of the reflections.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference11 articles.

1. Bleistein, N., 1984, Mathematical methods for wave phenomena: Academic Press.

2. French, W., 1974, Two‐dimensional and three‐dimensional migration of model experiment reflection profiles, in Gardner, G., Ed., Migration of seismic data: SEG Reprint Series 4, 142–154.

3. Harlan, W., 1990, Tomographic estimation of shear velocities from shallow crosswell data; 60th, Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 86–89.

4. Gaussian beam migration

5. Tracing of rays through heterogeneous media: An accurate and efficient procedure

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3