The Inverse Fresnel Beam XSP-CDP Stack Imaging in Crosswell Seismic

Author:

Yang Fei-Long,Ren Guang-Ying,Yao Feng-Ming,Zhao Chong

Abstract

In order to overcome the shortcomings of serious arc drawing and low computational efficiency in the crosswell seismic migration method and the problems of the inaccurate velocity model and sparse distribution of reflection points in the traditional stack imaging method, the article proposes an inverse Fresnel beam XSP-CDP stack imaging method based on first-arrival wave velocity tomography combined with the characteristics of crosswell seismic wave field. Firstly, an accurate crosswell velocity model is established by the first-arrival wave tomography inversion method based on the characteristics of high energy and easy pick-up of the first-arrival wave in crosswell seismic. Secondly, the velocity model is optimized, and the energy contribution weights of effective rays to the receiver point are calculated through the crosswell seismic Fresnel beam wave field forward numerical simulation method. Then, the reflected wave field is dynamically migrated to the reflection points within the first Fresnel zone according to the weight function, and the intensive common reflection point (CRP) gather after normal moveout (NMO) correction is generated. Finally, an appropriate bin is selected for stacking. In this article, the inverse Fresnel beam method is used to decompose the single-channel seismic wave field into the effective reflection points in the Fresnel zone, which makes the fold of the reflection point more uniform and improves the imaging accuracy. The model test and actual data processing results proved the validity and robustness of this method.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference40 articles.

1. Fresnel Volume Migration of Single-Component Seismic Data;Buske;Geophysics,2009

2. Borehole Seismic: A Bridge Connecting Multiple Oil and Gas Exploration Methods;Cai;Oil Geophys. Prospecting,2021

3. Application of Optical Fiber Bore Hole Seismic Technology in Western China;Cai;Geophys. Prospecting Pet.,2022

4. Gaussian Beams in Elastic 2-D Laterally Varying Layered Structures;Červený;Geophys. J. Int.,1984

5. Seismic Applications of One-Way Acoustic Reciprocity;Chauris,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3