Geophysical data processing, rock property inversion, and geomechanical model building in a Midland Basin development project, Midland/Ector counties, Texas

Author:

Singleton Scott1

Affiliation:

1. Independence Resources Management.

Abstract

The current state of the art for development of unconventional projects integrates geology, geophysics, and engineering into a comprehensive reservoir description. To that end, we have designed a comprehensive geophysical workflow to define the structure, stratigraphy, and rock mechanics of a stacked reservoir sequence in the west-central Midland Basin. The purpose of this paper is to describe the workflow. Portions of three seismic data sets were merged and processed anisotropically, preserving the full range of azimuths. Well control consisted of 35 compressional sonic logs, eight shear sonic logs, three sonic scanners, two lateral formation microimaging tools, and three cores. Nine newly drilled laterals are on production along with a large number of vertical legacy wells. Prestack inversion produced acoustic impedance, shear impedance, and density with good accuracy, although the compressional-to-shear-velocity ratio (VP/VS) was not stable. This volume was successfully recreated via neural net, which was also used to calculate total porosity and total water saturation volumes. Poisson's ratio, Young's modulus, and brittleness were created using standard equations and the neural net VP/VS volume. Structural attributes consisted of ant track, coherence, semblance, fault probability, and Kmin and Kmax curvature. The final step in this portion of the workflow was to create a high-resolution depth conversion velocity volume. A geocellular grid was built and populated with petrophysical volumes, lithology facies, and structural attributes. Principal stresses were incorporated by first establishing 1D mechanical earth models (MEMs) where appropriate log suites were available. These 1D MEMs were extended to a 3D MEM, although confidence in this volume is not high due to known pore pressure and closure stress reductions as a result of legacy vertical well production. Calibration incorporating new data as it becomes available is an ongoing task. An informative simulation using the MEM is frac models, which define the most optimal landing points for laterals. This MEM and the simulations it can perform have easily demonstrated the value of this integrated workflow.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3