Affiliation:
1. Callon Petroleum Company, Houston, Texas, USA..
2. Premier Oilfield Group, Houston, Texas, USA..
3. SIGMA Integrated Reservoir Solutions LLC, Houston, Texas, USA..
Abstract
Minimum horizontal stress (Sh) is the controlling parameter when hydraulic fracture stimulating tight oil formations but is next to impossible to measure quantitatively, especially in the far field and away from the wellbore. In-situ stress differences between bedding planes control fracture containment, which defines the complexity of fracture propagation and fracture geometry including orientation, height growth, width, and length. Geomechanical rock properties define elastic behavior, influencing how the subsurface will deform under induced stress. These properties include dynamic and static Young's modulus, Poisson's ratio, and Biot's coefficient. When combined with pore pressure and overburden stress, the elastic rock properties describe the mechanical earth model (MEM), which characterizes the geomechanical behavior of the subsurface. The MEM also defines key inputs for calculating Sh using the Ben Eaton stress equation, which has been commonly used by geoscientists for decades. However, calculated Sh from this simple model historically produces uncertain results when compared to field-measured stress due to an assumed homogeneous and isotropic subsurface. This is particularly contrary to tight oil formations that represent shale (or mudrock) reservoirs that are highly laminated and therefore anisotropic. Optimal parameterization of fracture geometry models for well spacing and engineered treatment design requires an anisotropic far-field in-situ stress measurement that accurately captures vertical and lateral variability of geomechanical properties in 3D space. A method is proposed herein that achieves this by using a modified version of the anisotropic Ben Eaton stress model. The method calculates minimum Sh by substitution of inverted 3D seismic volumes directly into the stress equation, replacing the bound Poisson's ratio term with an equivalent anisotropic corrected closure stress scalar (CSS) term. The CSS seismic volume is corrected for anisotropy using static triaxial core and is calibrated to multidomain data types including petrophysics, rock physics, geomechanics, and completion and reservoir engineering field measurements.
Publisher
Society of Exploration Geophysicists
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献