PS-wave moveout inversion for tilted TI media: A physical-modeling study

Author:

Dewangan Pawan12345,Tsvankin Ilya12345,Batzle Mike12345,van Wijk Kasper12345,Haney Matthew12345

Affiliation:

1. Formerly Colorado School of Mines, Center for Wave Phenomena, Department of Geophysics, Golden, Colorado 80401; presently National Institute of Oceanography, Geological Oceanography Division, Dona Paul, Goa-403004, India.

2. Colorado School of Mines, Center for Wave Phenomena, Department of Geophysics, 1500 Illinois Street, Golden, Colorado 80401.

3. Colorado School of Mines, Center for Rock Abuse, Department of Geophysics, Golden, Colorado 80401.

4. Colorado School of Mines, Physical Acoustics Laboratory, Department of Geophysics, Golden, Colorado 80401.

5. Formerly Colorado School of Mines, Center for Wave Phenomena, Department of Geophysics, Golden, Colorado 80401; presently Sandia National Laboratories, Geophysical Technology Department, Albuquerque, New Mexico 87185.

Abstract

Mode-converted PS-waves can provide critically important information for velocity analysis in transversely isotropic (TI) media. We demonstrate, with physical-modeling data, that the combination of long-spread reflection traveltimes of PP- and PS-waves can be inverted for the parameters of a horizontal TI layer with a tilted symmetry axis. The 2D multicomponent reflection data are acquired over a phenolic sample manufactured to simulate the effective medium formed by steeply dipping fracture sets or shale layers. The reflection moveout of PS-waves in this model is asymmetric with respect to the source and receiver positions, and the moveout-asymmetry attributes play a crucial role in constraining the TI parameters. Applying the modified [Formula: see text] method to the PP and PS traveltimes recorded in the symmetry-axis plane, we compute the time and offset asymmetry attributes of the PS-waves along with the traveltimes of the pure SS reflections. The algorithm of Dewangan and Tsvankin is then used to invert the combination of the moveout attributes of PP-, SS-, and PS-waves for the medium parameters and the thickness of the sample. It should be emphasized that the pure-mode (PP and SS) traveltimes alone are insufficient for the inversion, even if 3D wide-azimuth data are available. Our estimates of the symmetry axis tilt and layer thickness almost coincide with the actual values. The inverted model is also validated by reproducing the results of transmission experiments with both P- and S-wave sources. The transmitted SV wavefield exhibits a prominent cusp (triplication) accurately predicted by the parameter-estimation results.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3