Geometric and material attenuation of surface acoustic modes in granular media

Author:

Zaccherini R1ORCID,Palermo A2,Marzani A2,Colombi A1,Dertimanis V K1,Chatzi E N1

Affiliation:

1. Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich 8093, Switzerland

2. Department of Civil, Chemical, Environmental and Materials Engineering—DICAM, University of Bologna, Bologna 40136, Italy

Abstract

SUMMARYGranular materials can be used in laboratory-scale physical models to simulate and study seismic wave propagation in various unconsolidated, porous heterogeneous media. This is due to the diverse available grain configurations, in terms of their shape, size and mechanical parameters, which enable the physical and geological modelling of various complex substrates. In this work, an unconsolidated granular medium, made of silica microbeads, featuring a gravity-induced power-law stiffness profile is experimentally tested in a laboratory setting. The objective is to investigate the attenuation mechanisms of vertically polarized seismic waves traveling at the surface of unconsolidated substrates that are characterized by power-law rigidity profiles. Both geometric spreading and material damping due to skeletal dissipation are considered. The understanding of these two attenuation mechanisms is crucial in seismology for properly determining the seismic site response. An electromagnetic shaker is employed to excite the granular medium between 300 and 550 Hz, generating linear modes that are localized near the surface. A densely sampled section is recorded at the surface using a laser vibrometer. The explicit solution of the geometric attenuation law of Rayleigh-like waves in layered media is employed to calculate the geometric spreading function of the vertically polarized surface modes within the granular material. In accordance with recent studies, the dynamics of these small-amplitude multimodal linear waves can be analysed by considering the granular medium as perfectly continuous and elastic. By performing a nonlinear regression analysis on particle displacements, extracted from experimental velocity data, we determine the frequency-dependent attenuation coefficients, which account for the material damping. The findings of this work show that laboratory-scale physical models can be used to study the geometric spreading of vertically polarized seismic waves induced by the soil inhomogeneity and characterize the material damping of the medium.

Funder

ETH

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3