Affiliation:
1. Delft University of Technology, The Netherlands.
Abstract
Most wave-equation-based multiple removal algorithms are based on prediction and subtraction of multiples. Especially for shallow water, the prediction strongly relies on a correct interpolation of the missing near offsets. The subtraction of predicted multiples from the data can easily lead to the distortion of primaries if primaries and multiples overlap. Recently, a new approach for surface-related multiple removal was proposed: the estimation of primaries by sparse inversion (EPSI), which is based on a full waveform inversion approach. EPSI is based on the same primary-multiple model as surface-related multiple elimination (SRME) and does not require a subsurface model. In contrast to SRME, EPSI estimates the primaries as unknowns in a multidimensional inversion process rather than a subtraction process.The multidimensional primary impulse responses are parameterized by band-limited spikes, which are estimated such that they, along with their corresponding multiples, match the input data. An interesting aspect of the EPSI method is that it produces a residual, which is the part of the input data not explained by primaries and multiples. This residual can be analyzed and may provide useful information on the primary estimation process. Furthermore, it has been demonstrated that EPSI is also capable of reconstructing the missing near offsets from the multiples. The proposed method is applied to a field data set with moderate water depth, where it is demonstrated that the results are comparable with SRME. This data set is used to illustrate the residual. For a shallow-water field data set, it is shown that EPSI gives a better result than the standard SRME result caused by EPSI’s capability to reconstruct the missing near offsets.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献