3D angle gathers from reverse time migration

Author:

Xu Sheng1,Zhang Yu1,Tang Bing1

Affiliation:

1. CGGVeritas, Houston, Texas, U.S.A..

Abstract

Common-image gathers are an important output of prestack depth migration. They provide information needed for velocity model building and amplitude and phase information for subsurface attribute interpretation. Conventionally, common-image gathers are computed using Kirchhoff migration on common-offset/azimuth data volumes. When geologic structures are complex and strong contrasts exist in the velocity model, the complicated wave behaviors will create migration artifacts in the image gathers. As long as the gather output traces are indexed by any surface attribute, such as source location, receiver location, or surface plane-wave direction, they suffer from the migration artifacts caused by multiple raypaths. These problems have been addressed in a significant amount of work, resulting in common-image gathers computed in the reflection angle domain, whose traces are indexed by the subsurface reflection angle and/or the subsurface azimuth angle. Most of these efforts have concentrated on Kirchhoff and one-way wave-equation migration methods. For reverse time migration, subsurface angle gathers can be produced using the same approach as that used for one-way wave-equation migration. However, these approaches need to be revisited when producing high-quality subsurface angle gathers in three dimensions (reflection angle/azimuth angle), especially for wide-azimuth data. We have developed a method for obtaining 3D subsurface reflection angle/azimuth angle common-image gathers specifically for the amplitude-preserved reverse time migration. The method builds image gathers with a high-dimensional convolution of wavefields in the wavenumber domain. We have found a windowed antileakage Fourier transform method that leads to an efficient and practical implementation. This approach has generated high-resolution angle-domain gathers on synthetic 2.5D data and 3D wide-azimuth real data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3