Comparison of prestack stereotomography and NIP wave tomography for velocity model building: Instances from the Messinian evaporites

Author:

Dümmong Stefan1,Meier Kristina1,Gajewski Dirk1,Hübscher Christian1

Affiliation:

1. University of Hamburg, Institute of Geophysics, Hamburg, Germany.

Abstract

Velocity-model determination during seismic data processing is crucial for any kind of depth imaging. We compared two approaches of grid tomography: prestack stereotomography and normal-incidence-point (NIP) wave tomography. Whereas NIP wave tomography is based on wavefield attributes obtained during the common reflection surface stack and thus on the underlying hyperbolic second-order traveltime approximation, prestack stereotomography describes traveltimes by local slopes (i.e., linearly) in the prestack data domain. To analyze the impact of the different traveltime approximations and the different input-data domains on velocity model building, we applied two implementations of these techniques to two profiles of a field marine data set from the Levante Basin, eastern Mediterranean. Because ofthe presence of a thick, tabular mobile unit of the Messinian evaporites, strong vertical and lateral velocity contrasts had been expected. The velocity models revealed the reconstruction of high-velocity contrasts by grid tomographic methods is limited because of the smooth description of the velocity distribution. The lateral resolution of velocities obtained from prestack stereotomography appears to be better than those from NIP wave tomography, which is related to the difference in the approximation of traveltimes, the determination of input data, and the description of the velocity distribution. Other differences are caused mainly by different implementations of the inversion schemes. Nevertheless, both algorithms provide suitable models for high-quality depth imaging, whereas most of the reflections are fairly flat in CIGs.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3