An empirical study of instability and improvement of absorbing boundary conditions for the elastic wave equation

Author:

Mahrer Kenneth D.1

Affiliation:

1. Teledyne Geotech, 3401 Shiloh Road, P.O.Box 469007, Garland, TX 75046-9007

Abstract

One of the persistent problems with numerical solutions to the elastic wave equation is the finite size of the numerical grid. As with a physical body, the grid boundaries will reflect incident energy. If not eliminated or reduced substantially, these reflections will invade the grid interior and interfere with the desired solution. One method for eliminating reflections is creating a large and/or expanding grid. This method may be impractical since it can be quite costly in both computer time and memory. Another method is making the grid boundary “transparent” to outgoing energy. This method is ideally done by designing absorbing or nonreflecting boundaries which are mathematically equivalent to a one‐way, or outgoing, elastic wave equation only. In practice, an outgoing elastic wave equation is an approximation since the wave equation is not generally separable into outgoing and incoming parts. Two absorbing boundary condition approximations commonly used are those from Reynolds (Reynolds, 1978) and Clayton and Engquist, (Clayton and Engquist, 1977).

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Theory and New Unified Formulas of Displacement-Type Local Absorbing Boundary Conditions;Bulletin of the Seismological Society of America;2020-12-08

2. Solution of a P and S wave propagation model using high performance computation;CT&F - Ciencia, Tecnología y Futuro;2019-05-10

3. Preliminaries;Full Seismic Waveform Modelling and Inversion;2010-10-27

4. Absorbing Boundaries;Full Seismic Waveform Modelling and Inversion;2010-10-27

5. An energy absorbing far-field boundary condition for the elastic wave equation;Communications in Computational Physics;2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3