Solution of a P and S wave propagation model using high performance computation

Author:

Amado Jonathan,Piedrahita- Escobar Carlos C.,Vera- Ciro Carlos,Parra- Ortega Carlos Arturo

Abstract

The propagation of seismic waves is affected by the type of transmission media. Therefore, it is necessary to solve a differential equation system in partial derivatives allowing for identification of waves propagating into an elastic media. This paper summarizes a research using a partial differential equation system representing the wave equation using the finite differences method to obtain the elastic media response, using an staggered grid. To prevent reflections in the computational regions, absorbent boundaries were used with the PML method. The implementation of the numerical scheme was made on two computational architectures (CPU and GPU) that share the same type of memory distribution. Finally, different code versions were created to take advantage of the architecture in the GPU memory, performing a detailed analysis of variables such as usage of bandwidth of the GPU internal memory, added to a version that is not limited by the internal memory in the graphic processing unit, but rather by the memory of the whole computational system.

Publisher

Instituto Colombiano del Petroleo

Subject

General Energy,General Chemical Engineering,Geology,Geophysics,Fuel Technology,Renewable Energy, Sustainability and the Environment,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3