Magnetotelluric monitoring of coal-seam gas and shale-gas resource development in Australia

Author:

Rees Nigel1,Carter Simon1,Heinson Graham1,Krieger Lars1,Conway Dennis1,Boren Goran1,Matthews Chris1

Affiliation:

1. University of Adelaide.

Abstract

Extraction of unconventional energy has become a major global industry in the last decade and is driven by changes in technology and increasing demand. One of the key factors for the success of gas extraction is establishing sufficient permeability in otherwise low-porosity and low-permeability formations. Permeability can be established through hydraulic stimulation of deep formations, either through existing fracture networks or by creating new pathways for fluids to flow, and through depressurization of coalbeds by extracting existing subsurface fluids. Geophysical monitoring of hydraulic stimulation and depressurization can be used to determine lateral and vertical constraints on fluid movements in the target lithologies. Such constraints help to optimize production and well placement. In addition, independent verification is critical for social and environmental regulation, to ensure that hydraulic stimulations and depressurization do not interact with overlying aquifers. To date, the primary and most successful geophysical technique has been microseismic, which measures small seismic events associated with rock fractures from arrays of surface and downhole geophones. The microseismic approach has been used widely for many types of unconventional energy-resource development. The magnetotelluric (MT) method is an alternative approach to monitoring hydraulic stimulations and depressurization. In contrast to microseismic, which delineates the locations of rock fractures, MT is sensitive directly to the presence of fluid as measured by the earth's bulk electrical resistivity, which is dependent on permeability. MT is sensitive to the direction of fluid connection, so it might yield important information on how fluids migrate with time. Because subsurface fluids conduct electrical current dependent on the porosity, connectivity, and ionic saturation of the fluid, it follows that the introduction or removal of fluids will change the electrical resistivity of the formation. The physics of the approach is outlined, and the feasibility of the MT method for monitoring unconventional energy-resource development is demonstrated. Two case studies are conducted, one for a shallow (CSG) depressurization and the second for a deep hydraulic stimulation of a shale-gas reservoir.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3