Land streamer for shallow seismic data acquisition: Evaluation of gimbal‐mounted geophones

Author:

van der Veen Michiel1,Green Alan G.1

Affiliation:

1. Institute of Geophysics, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland. Emails:

Abstract

To increase the speed and efficiency of shallow seismic data recording and thereby decrease acquisition costs, the concept of a towed land streamer containing self‐orienting, gimbal‐mounted geophones is being evaluated. Our initial experiments at two locations within Switzerland demonstrate that good coupling with the ground may be achieved when the gimbal‐mounted vertical geophones are contained in heavy (∼1 kg) casings and pulled along a very shallow (2–3 cm deep) furrow. Such a furrow may be created by mounting a heavy wheel on the towing vehicle. Placing the geophones in even heavier casings may provide the necessary good coupling with the ground, negating the need for the furrow. Shot gathers and stacked sections recorded with the gimbal‐mounted geophones are practically indistinguishable from those recorded with conventional spike geophones. The principal advantage of this approach is that significantly fewer field personnel (only two or three) are required than for conventional shallow seismic surveying. When fully operational, the new acquisition system should be faster and less expensive for a wide variety of engineering and environmental applications.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3