Geophone ground coupling

Author:

Krohn Christine E.1

Affiliation:

1. Exxon Production Research Company, P.O. Box 2189, Houston, TX 77001

Abstract

The geophone ground coupling for vertical and horizontal geophones has been measured in the laboratory and in the field. The data can be fit to a calculated geophone response with a single coupling resonant frequency and damping factor. For frequencies much lower than the coupling resonant frequency, the geophone accurately follows the ground motion, but for higher frequencies the coupling can alter both the amplitude and phase of the seismic signal. The normal planting of vertical geophones in the field results in coupling adequate for conventional recording that uses frequencies less than 100 Hz. However, for very loose soils or for high‐frequency seismic recording, I recommend that the geophones be buried to place the geophones in firmer soil. The coupling resonant frequency for vertical geophones is determined by the firmness of the soil, and I have measured resonant frequencies ranging from 100 to 500 Hz at different locations. The coupling resonant frequency is insensitive to changes in the mass or base diameter of the vertical geophones. Because the firmness of the soil increases with depth, the coupling resonant frequency can he increased by burial of the geophones or by the use of longer spikes. Adequate coupling is very important in shear‐wave recording because the rocking of horizontal geophones causes a low‐frequency coupling resonance. It is crucial that horizontal geophones be planted with their bases firmly contacting the soil. Geophones so planted have a resonance around 130 Hz, whereas those 1 cm off the ground can have a resonance of 30 Hz or lower. Soil conditions have little effect on the resonant frequency. Horizontal geophones with 1-inch spikes are as well coupled as those with longer spikes, but the best coupling is achieved by burial of the geophones.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3