Sparse Radon transform in the mixed frequency-time domain with ℓ1-2 minimization

Author:

Geng Weiheng1ORCID,Chen Xiaohong2ORCID,Li Jingye1,Ma Jitao1,Tang Wei1ORCID,Wu Fan1ORCID

Affiliation:

1. China University of Petroleum-Beijing, National Engineering Laboratory for Offshore Oil Exploration, State Key Laboratory of Petroleum Resources and Prospecting, Beijing, China.

2. China University of Petroleum-Beijing, National Engineering Laboratory for Offshore Oil Exploration, State Key Laboratory of Petroleum Resources and Prospecting, Beijing, China. (corresponding author)

Abstract

Due to the finite acquisition aperture and sampling of seismic data, the Radon transform (RT) suffers from a smearing problem which reduces the resolution of the estimated model. In addition, inverting the RT is typically an ill-posed problem. To address these challenges, a sparse RT mixing the [Formula: see text] and [Formula: see text] norms of the RT coefficients in the mixed frequency-time domain is developed, and it is denoted as SRTL1-2. In most conventional sparse RTs, the sparse constraint term often is the [Formula: see text] norm of the Radon model. We prove that the sparsity effect of the [Formula: see text] minimization is better than that of the [Formula: see text] norm alone by comparing and analyzing their 2D distribution patterns and threshold functions. The difference of the convex functions algorithm and the alternating direction method of multipliers algorithm are modified by combining the forward and inverse Fourier transforms to solve the corresponding sparse inverse problem in the mixed frequency-time domain. Our method is compared with three RT methods, including a least-squares RT (LSRT), a frequency-domain sparse RT (FSRT), and a time-invariant RT in the mixed frequency-time domain based on an iterative 2D model shrinkage method (SRTIS). Furthermore, we modify the basis function in SRTL1-2 by including an orthogonal polynomial transform to fit the amplitude-variation-with-offset (AVO) signatures found in seismic data, and we denote this as high-order SRTL1-2. Compared to the SRTL1-2, the high-order SRTL1-2 performs better when processing seismic data with AVO signatures. Synthetic and real data examples indicate that our method has better performance than the LSRT, FSRT, and SRTIS in terms of attenuation of multiples, noise mitigation, and computational efficiency.

Funder

the research center of CNOOC at Beijing

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3