Time-lapse data matching using a recurrent neural network approach

Author:

Alali Abdullah1ORCID,Kazei Vladimir2ORCID,Sun Bingbing3ORCID,Alkhalifah Tariq4ORCID

Affiliation:

1. King Abdullah University of Science and Technology (KAUST), Earth Science and Engineering, Thuwal, Saudi Arabia. (corresponding author)

2. Aramco Americas, Houston, Texas, USA. .

3. Saudi Aramco, Expec Arc, Dhahran, Saudi Arabia.

4. King Abdullah University of Science and Technology (KAUST), Earth Science and Engineering, Thuwal, Saudi Arabia.

Abstract

Time-lapse seismic data acquisition is an essential tool to monitor changes in a reservoir due to fluid injection, such as CO2 injection. By acquiring multiple seismic surveys in the exact same location, the authors can identify the reservoir changes by analyzing the difference in the data. However, such analysis can be skewed by the near-surface seasonal velocity variations, inaccuracy, and repeatability in the acquisition parameters, and other inevitable noise. The common practice (cross equalization) to address this problem uses the part of the data in which changes are not expected to design a matching filter and then apply it to the whole data, including the reservoir area. Like cross equalization, the authors train a recurrent neural network (RNN) on parts of the data excluding the reservoir area and then infer the reservoir-related data. The RNN can learn the time dependency of the data, unlike the matching filter that processes the data based on the local information obtained in the filter window. The authors determine the method of matching the data in various examples and compare it with the conventional matching filter. Specifically, we start by demonstrating the ability of the approach in matching two traces and then test the method on a prestack 2D synthetic data. Then, the authors verify the enhancements of the 4D signal by providing reverse time migration images. The authors measure the repeatability using normalized root-mean-square and predictability metrics and find that, in some cases, our proposed method performed better than the matching filter approach.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3