DeepNRMS: Unsupervised deep learning for noise-robust CO2 monitoring in time-lapse seismic images

Author:

Park Min Jun1ORCID,Frigerio Julio2ORCID,Clapp Bob2,Biondi Biondo2ORCID

Affiliation:

1. Stanford University, Department of Geophysics, Stanford, California, USA. (corresponding author)

2. Stanford University, Department of Geophysics, Stanford, California, USA.

Abstract

Monitoring stored [Formula: see text] in carbon capture and storage projects is crucial for ensuring safety and effectiveness. We introduce DeepNRMS, a novel noise-robust method that effectively handles time-lapse noise in seismic images. The DeepNRMS leverages unsupervised deep learning to acquire knowledge of time-lapse noise characteristics from preinjection surveys. By using this learned knowledge, our approach accurately discerns [Formula: see text]-induced subtle signals from the high-amplitude time-lapse noise, ensuring fidelity in monitoring while reducing costs by enabling sparse acquisition. We evaluate our method using synthetic data and field data acquired in the Aquistore project. In the synthetic experiments, we simulate time-lapse noise by incorporating random near-surface effects in the elastic properties of the subsurface model. We train our neural networks exclusively on preinjection seismic images and subsequently predict [Formula: see text] locations from postinjection seismic images. In the field data analysis from Aquistore, the images from preinjection surveys are used to train the neural networks with the characteristics of time-lapse noise, followed by identifying [Formula: see text] plumes within two postinjection surveys. The outcomes demonstrate the improved accuracy achieved by DeepNRMS, effectively addressing the strong time-lapse noise.

Publisher

Society of Exploration Geophysicists

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Seismic Magnitude Forecasting through Machine Learning Paradigms: A Confluence of Predictive Models;International Journal of Innovative Science and Research Technology (IJISRT);2024-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3