3D controlled-source electromagnetic inversion in the radio-frequency band

Author:

Smirnova Maria1ORCID,Shlykov Arseny2ORCID,Fadavi Asghari Shiva3ORCID,Tezkan Bülent3ORCID,Saraev Alexander2ORCID,Yogeshwar Pritam3ORCID,Smirnov Maxim4ORCID

Affiliation:

1. University of Cologne, Institute of Geophysics and Meteorology, Cologne, Germany. (corresponding author)

2. Saint-Petersburg State University, Institute of Earth Sciences, Saint-Petersburg, Russia.

3. University of Cologne, Institute of Geophysics and Meteorology, Cologne, Germany.

4. Luleå University of Technology, Luleå, Sweden.

Abstract

The classical radio-magnetotelluric (RMT) method is nowadays routinely applied to various environmental, engineering, and exploration problems. The technique uses radio transmitters broadcasting in the frequency range of 10 kHz to 1 MHz, and the measurements are carried out in the far field. The well-known disadvantages of RMT are a lack of robust radio transmitters in remote areas; the absence of transmitters broadcasting below 10 kHz, which limits the penetration depth; and a possible low signal-to-noise ratio. To overcome these difficulties, controlled sources can be used (controlled-source RMT [CSRMT]). We extend the CSRMT method to perform measurements not only in the far field but also in the transition zone. In CSRMT practice, it often is challenging to maintain far-field conditions for logistical reasons. Therefore, part of the measured data contains signatures of the source field, which cannot be interpreted with magnetotelluric software. In addition, the source placed directly in the survey area allows us to increase the signal-to-noise ratio and resolution. Such CSRMT in the transition zone is, in fact, a controlled-source electromagnetic method but with full impedance tensor and tipper vector transfer functions. We develop new procedures for the 3D modeling and inversion of the tensor radio-frequency data measured in the transition zone of two perpendicular horizontal electric dipole sources. In this case, the geometry of the source must be considered in the forward modeling. The developed modeling and inversion software is tested on a synthetic 3D model. The 3D resistivity models derived from the real data confirm the geologic settings and are consistent with the available borehole information. Therefore, we conclude that the CSRMT approach extended to include the source field is feasible and that the developed procedures are reliable.

Funder

Deutsche Forschungsgemeinschaft

Russian Science Foundation

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3