An accurate and efficient multiscale finite-difference frequency-domain method for the scalar Helmholtz equation

Author:

Jiang Wei1ORCID,Chen Xuehua1ORCID,Lv Bingnan2ORCID,Jiang Shuaishuai2ORCID

Affiliation:

1. Chengdu University of Technology, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu 610059, China and Chengdu University of Technology, Key Laboratory of Earth Exploration and Information Techniques of Ministry of Education, Chengdu 610059, China.(corresponding author).

2. Chengdu University of Technology, Key Laboratory of Earth Exploration and Information Techniques of Ministry of Education, Chengdu 610059, China..

Abstract

Frequency-domain numerical modeling of the seismic wave equation can readily describe frequency-dependent seismic wave behaviors, yet it is computationally challenging to perform in finely discretized or large-scale geologic models. Conventional finite-difference frequency-domain (FDFD) methods for solving the Helmholtz equation usually lead to large linear systems that are difficult to solve with a direct or iterative solver. Parallel strategies and hybrid solvers can partially alleviate the computational burden by improving the performance of the linear system solver. We have developed a novel multiscale FDFD method to eventually construct a dimension-reduced linear system from the scalar Helmholtz equation based on the general framework of heterogeneous multiscale method. The methodology associated with multiscale basis functions in the multiscale finite-element method is applied to the local microscale problems of this multiscale FDFD method. Solved from frequency- and medium-dependent local Helmholtz problems, these multiscale basis functions capture fine-scale medium heterogeneities and are finally incorporated into the dimension-reduced linear system by a coupling of scalar Helmholtz problem solutions at two scales. We use several highly heterogeneous models to verify the performance in terms of the accuracy, efficiency, and memory cost of our multiscale method. The results indicate that our new method can solve the scalar Helmholtz equation in complicated models with high accuracy and quite low time and memory costs compared to the conventional FDFD methods.

Funder

National Natural Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3